MicrobiomeStat Tutorial
  • Track, Analyze, Visualize: Unravel Your Microbiome's Temporal Pattern with MicrobiomeStat.
  • INTRODUCTION
    • Exploring MicrobiomeStat: A Consideration for Your Research Toolkit
  • Setting Up MicrobiomeStat: Installation and Data Preparation
    • Installation Guide
    • Creating the MicrobiomeStat Data Object
      • Building MicrobiomeStat from Matrix and Data.frame
      • Converting Data from Phyloseq into MicrobiomeStat
      • Importing Data from QIIME2 into MicrobiomeStat
      • Importing Data from BIOM into MicrobiomeStat
      • Converting SummarizedExperiment into MicrobiomeStat
      • Converting DGEList Data into MicrobiomeStat
      • Converting DESeqDataSet into MicrobiomeStat
      • Importing Data from DADA2 into MicrobiomeStat
      • Importing Data from Mothur into MicrobiomeStat
  • Single-Point Analysis
    • Introduction
    • Alpha Diversity Analysis
    • Beta Diversity Analysis
    • Feature-level Analysis
    • One-Click Reports Generation
  • Paired Samples Analysis
    • Introduction
    • Alpha Diversity Analysis
    • Beta Diversity Analysis
    • Feature-level Analysis
    • One-Click Reports Generation
  • Longitudinal Analysis
    • Introduction
    • Alpha Diversity Analysis
    • Beta Diversity Analysis
    • Feature-level Analysis
    • One-Click Reports Generation
  • Data Manipulation and Transformation
    • Data Summary
    • Data Aggregation
    • Data Normalization
    • Data Filtering
    • Data Validation
    • Data Combination
    • Metadata Management
    • Color Palette
  • Frequently Asked Questions (FAQ)
    • General FAQs
Powered by GitBook
On this page
  • Metadata Management
  • Update Metadata
  • Update Sample Names

Was this helpful?

Edit on GitHub
  1. Data Manipulation and Transformation

Metadata Management

Metadata provides crucial sample information for microbiome analysis. Effective metadata management enables robust comparative analysis.

Metadata Management

Metadata provides key sample information for integrated microbiome analysis. MicrobiomeStat offers functions to update and synchronize metadata.

Update Metadata

The mStat_update_meta_data() function updates metadata from a file or dataframe:

mStat_update_meta_data(
  data.obj = obj,
  map.file = "new_meta.csv" 
)

It can handle CSVs, TSVs, etc.

Steps include:

  • Load metadata file or dataframe

  • Replace existing meta.dat

  • Subset feature table by intersecting samples

  • Return updated data object

This allows incorporating new metadata to enable more powerful integrated analyses.

Update Sample Names

The mStat_update_sample_name() function updates sample names across data components:

mStat_update_sample_name(
  data.obj = obj,
  new.name = c("s1", "s2", "s3")
)

It synchronizes sample names in meta.dat, feature.tab, and feature.agg.list.

Key steps:

  • Check new names are valid

  • Update meta.dat rownames

  • Update feature.agg.list colnames

  • Update feature.tab colnames

This maintains data consistency when updating sample identifiers.

Proper metadata management ensures high-quality integrated analyses. MicrobiomeStat empowers seamless metadata updates to enable robust microbiome discoveries.

PreviousData CombinationNextColor Palette

Last updated 1 year ago

Was this helpful?